Bridging the Gap between Stochastic Gradient MCMC and Stochastic Optimization

نویسندگان

  • Changyou Chen
  • David E. Carlson
  • Zhe Gan
  • Chunyuan Li
  • Lawrence Carin
چکیده

Stochastic gradient Markov chain Monte Carlo (SG-MCMC) methods are Bayesian analogs to popular stochastic optimization methods; however, this connection is not well studied. We explore this relationship by applying simulated annealing to an SGMCMC algorithm. Furthermore, we extend recent SG-MCMC methods with two key components: i) adaptive preconditioners (as in ADAgrad or RMSprop), and ii) adaptive element-wise momentum weights. The zerotemperature limit gives a novel stochastic optimization method with adaptive elementwise momentum weights, while conventional optimization methods only have a shared, static momentum weight. Under certain assumptions, our theoretical analysis suggests the proposed simulated annealing approach converges close to the global optima. Experiments on several deep neural network models show state-of-the-art results compared to related stochastic optimization algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bridging the Gap between Stochastic Gradient MCMC and Stochastic Optimization: Supplementary Material

A Solutions for the sub-SDEs We provide analytic solutions for the split sub-SDEs in Section 4.1. For stepsize h, the solutions are given in (6). A :      θ t = θ t−1 + G 1 (θ) p h p t = p t−1

متن کامل

Numerical Solution of Optimal Heating of Temperature Field in Uncertain Environment Modelled by the use of Boundary Control

‎In the present paper‎, ‎optimal heating of temperature field which is modelled as a boundary optimal control problem‎, ‎is investigated in the uncertain environments and then it is solved numerically‎. ‎In physical modelling‎, ‎a partial differential equation with stochastic input and stochastic parameter are applied as the constraint of the optimal control problem‎. ‎Controls are implemented ...

متن کامل

SGD with Variance Reduction beyond Empirical Risk Minimization

We introduce a doubly stochastic proximal gradient algorithm for optimizing a finite average of smooth convex functions, whose gradients depend on numerically expensive expectations. Our main motivation is the acceleration of the optimization of the regularized Cox partial-likelihood (the core model used in survival analysis), but our algorithm can be used in different settings as well. The pro...

متن کامل

Conditional Gradient Method for Stochastic Submodular Maximization: Closing the Gap

In this paper, we study the problem of constrained and stochastic continuous submodular maximization. Even though the objective function is not concave (nor convex) and is defined in terms of an expectation, we develop a variant of the conditional gradient method, called Stochastic Continuous Greedy, which achieves a tight approximation guarantee. More precisely, for a monotone and continuous D...

متن کامل

Joint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis

Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016